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Abstract

Accurate mechanical models of elastic beams undergoing large in-plane motions are discussed theoretically and
experimentally. Employing the geometrically exact theory of rods with appropriate kinematic assumptions and asymp-
totic arguments, two approximate models are obtained—a relaxed model and its constrained version—that describe
extensional and bending motions and neglect shear deformations. These models are shown to be suitable to predict,
via an asymptotic approach, closed-form nonlinear motions of beams with general boundary conditions and, in partic-
ular, with boundary conditions that longitudinally constrain the motions. On the other hand, for axially unrestrained or
weakly restrained beams, an inextensible and unshearable model is presented that describes bending motions only. The
perturbations about the reference configuration up to third order are consistently derived for all beam models. Closed-
form solutions of the responses to primary-resonance excitations are obtained via an asymptotic treatment of the
governing equations of motion for two different beam configurations; namely, hinged–hinged (axially restrained)
and simply supported (axially unrestrained) beams. In particular, considering the present theory and the existing the-
ories, variations of the frequency–response curves with the beam slenderness or the relative boundary mass are inves-
tigated for the lowest modes. The fidelity of the proposed nonlinear models is ascertained comparing the theoretically
obtained frequency–response curves of the first mode with those experimentally obtained.
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1. Introduction

Large-amplitude planar motions of beam structures are encountered in a variety of engineering applica-
tions. These motions are excited around resonances with finite displacements and rotations whereas the
strains often remain small.

The most comprehensive theory today available to describe overall motions of rods is the special

Cosserat theory of rods (Villaggio, 1997). The beam is mathematically conceived as a one-dimensional
continuum with a local rigid structure. Because of the postulated local rigidity, the sections cannot undergo
distortion and warping deformations; therefore, the theory is mainly restricted to beams with closed cross-
sections.

In the literature, there have been various implementations of the special Cosserat theory of rods. In par-
ticular, in computational mechanics, different finite element formulations have been presented to address
either nonlinear statics or overall motions of rods in space. Beside numerical approaches, analytical treat-
ments, often based on perturbation techniques, have been used to address static and dynamic problems
(Eisley, 1964; Atluri, 1973; Nayfeh et al., 1974; Crespo da Silva and Glynn, 1978; Luongo et al., 1986;
Nayfeh and Pai, 2004; Lacarbonara et al., 2004). A few works have compared the solutions obtained via
finite element schemes with those analytically obtained such as for cables undergoing resonant motions
(Gattulli et al., 2004).

Typically, the analytical approaches have employed approximate mechanical models that account for
geometric and inertia nonlinearities, often using a variational formulation based on a truncated kinematic
model. Restricting the attention to planar shear-undeformable beams, there are two main groups of works.
One is devoted to studying hinged–hinged (axially restrained) beams considering the hardening effect of the
beam axis stretching as dominant nonlinearity. These studies (Eisley, 1964; Nayfeh et al., 1974; Lacarbon-
ara and Camillacci, 2004) have been mostly inspired by the work due to Mettler (1962).

A few other works have dealt with modeling of the dynamic behavior of beams without axial restraints
whereby the most important nonlinearities have been singled out in the nonlinear inertia forces and finite
bending curvature (Atluri, 1973; Crespo da Silva and Glynn, 1978). In particular, Atluri (1973) was the first
to recognize the intrinsically different nonlinear signatures of the beams of the first group in contrast with
those of the second group. Namely, he showed that the first mode of beams without axial restraints exhibits
a softening nonlinearity in contrast with that of axially restrained beams that are of the hardening type and
concluded that longitudinal inertia is the dominant nonlinearity in the first case.

Later, Luongo et al. (1986) revisited this problem in a unified fashion. Considering two truncated kine-
matic models and employing Hamilton�s extended principle, they investigated the nonlinear features of the
beams of the two groups with different boundary conditions. They considered the first and third modes and
confirmed the results obtained by Atluri (1973). Crespo da Silva (1988) derived a model accounting for
stretching, curvature and inertia nonlinearities and showed that the stretching effect is dominant for axially
restrained beams.

Beside the widespread nature of these studies, there seems to be a lack of mathematical consistency in the
way the truncated mechanical models of nonlinear beams are obtained—often based on ad hoc kinematic
approximations—as well as a lack of experimental validation of the fidelity of the ensuing models. Hence,
the primary objective of the present work is to obtain rigorously and systematically approximate mechan-
ical models that accurately describe finite planar motions of beams with general boundary conditions and
to compare their leading predictions with experimental results. Moreover, it is of interest to compare the
theoretical results obtained via the proposed models with those obtained using Mettler�s theory applicable
to axially restrained beams. To this end, we investigate variations of the effective nonlinearity coefficient of
the lowest modes as it regulates the qualitative character of the nonlinear frequency–response functions—
softening-type versus hardening-type behavior —as well as the quantitative dependence of the mode non-
linear frequency corrections on the oscillation amplitude.



5068 W. Lacarbonara, H. Yabuno / International Journal of Solids and Structures 43 (2006) 5066–5084
The paper is organized as follows. The geometrically exact equations of motion, without a priori kine-
matic approximations, are discussed in Section 2. The second perturbation of the governing equations of
motion for general beams is presented in Section 2.1. In Sections 3 and 4, two beam models are considered,
namely, a constrained model for extensible beams and a model for inextensible beams. In Section 5, the
asymptotic solutions are obtained applying directly the method of multiple scales to the equations govern-
ing the two beam configurations—axially restrained and unrestrained beams—subject to a primary reso-
nance of an arbitrary bending mode. The main analytical predictions, relating to the different nonlinear
signatures—softening versus hardening—of the first mode of hinged–hinged (axially restrained) and simply
supported (axially unrestrained) beams are discussed also with reference to previously adopted beam
models. In Section 6, the main experimental results are presented and the theoretically obtained
frequency–response curves are compared with those experimentally obtained. In Section 7, the concluding
remarks are drawn.
2. Mechanical formulation for elastic beams undergoing large in-plane motions

In this section, the kinematics and mechanics describing overall planar motions of elastic beams are sum-
marized. The beam is straight in its rest reference configuration Cn (Fig. 1); it is sufficiently slender with a
closed cross-section and is made of a hyperelastic and homogeneous material. Due to its relatively high
slenderness, the beam is considered absolutely unshearable.

A Lagrangian description of the motion is adopted. Denoting with ej (j = 1,2,3) the orthonormal vectors
of a fixed inertial reference frame (Fig. 1, bottom) such that e1 is parallel to the beam base curve (here, coin-
cident with the beam undeformed centroidal axis), the position of a material point along the beam axis is
represented by the vector X(x) :¼ xe1 where x denotes the coordinate along the straight undeformed beam
axis with the origin O fixed at the left end. Thus, the elastodynamic problem becomes parameterized with x

spanning the compact support D :¼ {xjx 2 [0, ‘]}, where ‘ is the length of the undeformed beam axis in Cn.
The generic material section in the reference configuration Cn is specified by the pair of orthonormal vectors
a2 and a3, a1 :¼ a2 · a3 is set so that (a1,a2,a3) is a right-handed orthonormal basis in E3 Euclidean space.
Due to time-dependent in-plane forces, acting in the (e1,e2)-plane, represented by body forces b(x, t) and
couples c(x, t) :¼ c(x, t)e3 per unit reference length, boundary forces B(t) and couples C(t) applied on the
free boundary, the beam undergoes a naturally planar deformation process in the (e1,e2)-plane, a plane
of symmetry for the beam.

Denoting the displacement vector from Cn to C with u :¼ ua1 + va2, the section placement is then defined
by the position vector x(x, t) :¼ X(x) + u(x, t) and by the pair of orthonormal directors d2(x, t) and d3(x, t),
respectively (again, d1 :¼ d2 · d3). The directors dj (j = 1,2) are obtained from aj via a finite rotation about
Fig. 1. Scheme of the beam with the end mass and spring in the rest (top) and current (bottom) configurations, respectively.
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the d3-axis, described by the proper orthogonal rotation tensor R(x, t), restricted to the plane spanned by a1

and a2; that is, dj = Raj with Re1 :¼ [cosh, sinh]> and Re2 :¼ [�sinh, cosh]> where use of the matrix nota-
tion has been made and > indicates the transpose.

The beam generalized strains are calculated in the reference configuration as the components of the fol-
lowing strain vector and curvature tensor, respectively. Namely, the strain vector is defined as
�(x, t) :¼ R>x 0 � X 0 and the curvature tensor is K(x, t) :¼ R>R 0 where the prime denotes differentiation with
respect to x.

The beam unshearability is enforced via the internal kinematic constraint c :¼ � Æ a2 = 0 (the dot indi-
cates the standard dot product in E2 Euclidean space). This constraint, in turn, is solved to yield the beam
section rotation as
h ¼ tan�1 v0

1þ u0

� �
ð1Þ
where tan�1 denotes the inverse of the tangent function. Furthermore, sinh = v 0/(1 + e) and cosh =
(1 + u 0)/(1 + e). Consequently, the only nontrivial strains are the axial strain and the bending curvature,
the non-zero component of the curvature tensor K, and are expressed as
e :¼ � � a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðv0Þ2

q
� 1 and k :¼ h0 � v00 þ u0v00 � u00v0

ð1þ eÞ2
ð2Þ
Let the contact force and couple, mutually exerted by two adjoining sections, be expressed as
nðx; tÞ :¼ Nðx; tÞd1ðx; tÞ þ Hðx; tÞd2ðx; tÞ; mðx; tÞ :¼ Mðx; tÞd3 ð3Þ

where N and H indicate the axial load and shear force, respectively, and M is the bending moment. The
equilibrium equations, requiring the balance of linear momentum and moment of momentum, are
n0 þ b ¼ 0 ð4Þ

M 0 þ d3 � ðx0 � nÞ þ c ¼ 0 ð5Þ

where · denotes the vector product. Beside the kinematic boundary conditions that prescribe u and h, the
mechanical boundary conditions are
Nd1 þ Hd2 ¼ �B; m ¼ �C ð6Þ

where the minus and plus signs refer to x = 0 and x = ‘, respectively. The equilibrium equations, after fil-
tering out the shear force H, become
N 0 þ k
1þ e

M 0 þ k
1þ e

cþ b1 ¼ 0 ð7Þ

M 0

1þ e

� �0
þ c

1þ e

� �0
� kN � b2 ¼ 0 ð8Þ
where b1(x, t) and b2(x, t) denote the body forces per unit reference length along the d1 and d2 directions,
respectively.

By virtue of D�Alembert�s principle, we can express the external body forces, the dissipative viscous
forces and the inertia forces and the corresponding couples in the form bðx; tÞ :¼ f � fd � qA€x ¼
ðf1 � cu _u� qA€uÞa1 þ ðf2 � cv _v� qA€vÞa2 and cðx; tÞ :¼ ðce � ch

_h� qI€hÞa3 where _h and €h are obtained differ-
entiating (2) with respect to time t, q is the mass density; A is the area of the cross-section; I denotes the
moment of inertia about the a3-axis which is one of the principal inertia axes of the beam cross-section;
cu, cv and ch denote the linear viscous damping coefficients in the directions indicated by the subscript;
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ce is the density of the external couples; and the overdot indicates differentiation with respect to time t. To
inertially uncouple the equations of motion, we project them into the (a1,a2)-basis and obtain
qA€uþ cu _u� N 0 þ k
1þ e

M 0 þ k
1þ e

ðce � ch
_h� qI€hÞ

� �
cos h

� M 0

1þ e

� �0
� kN þ ce � ch

_h� qI€h
1þ e

 !0" #
sin h ¼ f1 ð9Þ

qA€vþ cv _v� N 0 þ k
1þ e

M 0 þ k
1þ e

ðce � ch
_h� qI€hÞ

� �
sin h

þ M 0

1þ e

� �0
� kN þ ce � ch

_h� qI€h
1þ e

 !0" #
cos h ¼ f2 ð10Þ
Considering the boundary conditions of the beam in Fig. 1, they are expressed as
uð0; tÞ ¼ 0; vð0; tÞ ¼ 0; vð‘; tÞ ¼ 0; Mð0; tÞ ¼ Mð‘; tÞ ¼ 0 ð11Þ

N cos hþ M 0

1þ e
sin h ¼ �m‘€u� K‘u at x ¼ ‘ ð12Þ
where m‘ and K‘ are the lumped mass and the end spring constant (see Fig. 1).
The presence of an end load, P(t), applied onto the roller support would render the boundary conditions

nonhomogeneous. In Section 3, discussing a constrained model for extensible beams, it will be clear that the
governing equations of motion can be lumped into an integral–partial–differential equation with time-vary-
ing coefficients arising from the time-varying boundary action. This indicates that, beside primary and sec-
ondary (super- or sub-harmonic, combination) resonances, also parametric resonances may occur and
simultaneously internal resonances may be initiated due to the nonlinear modal coupling forces.

From a constitutive point of view, the material is hyperelastic, isotropic and homogeneous. Moreover,
because (i) the axial strain is small, (ii) the curvature is moderately large and (iii) the selected base curve is
the centroidal curve, then the constitutive equations are assumed in the linearized and uncoupled form
Nðx; tÞ ¼ EAðxÞeðx; tÞ; Mðx; tÞ ¼ EIðxÞkðx; tÞ ð13Þ
where E indicates Young�s modulus.

2.1. Perturbed equations of motion

In view of seeking asymptotically valid solutions for moderately large-amplitude motions, the geomet-
rically exact equations of motion are perturbed around the reference configuration Cn by considering their
Mac Laurin series expansions up to third polynomial order. To this end, the axial strain and bending cur-
vature are first expanded as
eðx; tÞ � u0 þ 1

2
ðv0Þ2 � 1

2
u0ðv0Þ2; kðx; tÞ � v00 � u0v0ð Þ0 � v02v00 þ ðu02v0Þ0 ð14Þ
Substituting these expressions into the constitutive laws, Eq. (13), the ensuing internal forces are further
substituted into the equations of motion (9) and (10). Their subsequent expansions to third order yield
the governing equations of motion that, neglecting the small rotary inertia and damping rotary terms
and the external couples, can be written as
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qA€uþ cu _u� ðEAu0Þ0 � 1

2
ðEAv02Þ0 þ ðEAu0Þv02

h i0
� ðEIv00Þ0v0
� �0 þ EIðu0v0Þ0

� �0
v0

n o0
þ 2 ðEIv00Þ0ðu0v0Þ
� �0 ¼ f1 ð15Þ

qA€vþ cv _vþ ðEIv00Þ00 � ðEIv00Þ0u0
� �0 � EIðu0v0Þ0

� �00 þ EIðu0v0Þ0
� �0

u0
n o0

þ ðEIv00Þ0ðu02 � v02Þ
� �0

þ EIðu02v0Þ0
� �00 � EIv02v00

� �00 � ðEAu0v0Þ0 þ ðEAu02v0Þ0 � 1

2
EAv03
	 
0

¼ f2 ð16Þ
Similarly, the expansion of the mechanical boundary conditions, Eqs. (11)4 and (12), gives
EI v00 � ðu0v0Þ0 � v02v00 þ ðu02v0Þ0
� �

¼ 0 ð17Þ

m‘€uþ K‘uþ EAu0 þ 1

2
EAv02 � EAu0v02 þ ðEIv00Þ0v0 � ðEIv00Þ0u0v0 � EIðu0v0Þ0

� �0
v0 ¼ 0 ð18Þ
In the literature, it has been a common practice to derive the governing equations of motion using
Hamilton�s extended principle (Crespo da Silva and Glynn, 1978; Luongo et al., 1986; Nayfeh and Pai,
2004) which reads dH� ¼

R t2

t1
½dðT � UÞ þ dW 	dt ¼ 0 where T and U indicate the kinetic and potential ener-

gies, respectively, and dW denotes the virtual work performed by the distributed forces Qu :¼ f1 � cu _u and
Qv :¼ f2 � cv _v. Of course, adopting the kinematical model whose strains are described by (14), and employ-
ing Hamilton�s extended principle, the same equations of motion, (15) and (16), and boundary conditions,
(17) and (18), are obtained via the variational process. Retaining terms up to fourth order in the energies,
the kinetic and strain energies are, respectively,
T ¼ 1

2

Z ‘

0

qA _u2 þ _v2
� �

dxþ 1

2
m‘ _uð‘; tÞ2 ð19Þ

U ¼ 1

2

Z ‘

0

EA u02 þ u0v02 � u02v02 þ 1

4
v04

� �
dxþ 1

2

Z ‘

0

EI v002 � 2ðu00v0v00 þ u0v002Þ
�

þv02u002 þ 6u0u00v0v00 þ 3u02v002 � 2v02v002
�

dxþ 1

2
K‘uð‘; tÞ2 ð20Þ
Considering the boundary condition (18), depending on the magnitude of l :¼ m‘/(qA‘) or k‘ :¼ (‘3K‘)/
(EI), the beam may behave quite differently. When l
 1 and/or k‘
 1, the end reaction force acts to re-
strict the motion of the beam boundary. Consequently, the beam axis may be subject to extensions. In the
limit of an infinitely large spring constant or mass, the right boundary condition becomes that of an immov-
able hinge.

On the other hand, when l = O(1) and k‘ = O(1) or they are infinitesimal, the axial motion at the bound-
ary is weakly constrained, and, hence, if there are no applied loads in the longitudinal direction, the beam
practically behaves as an inextensible medium. Of course, the general equations of motion (15) and (16)
hold in both scenarios, although when the axial deformation is truly negligible, a kinematically constrained
model is preferable from a computational standpoint. In the next section, we discuss the derivation of a
constrained model whereby the longitudinal motion is expressed in terms of the leading transverse motion.
Then, in Section 4, an accurate model for inextensible beams is presented.
3. A constrained model for extensible beams

It is assumed that there are no longitudinal loads (i.e., b1 � 0) so that the longitudinal inertia force can be
considered of higher order with respect to the other axial forces. We further assume that the rotary inertia
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and damping terms and the distributed couples are negligible. Integrating the balance equation in the d1-
direction, Eq. (7), from ‘ to x and incorporating the mechanical boundary condition (12) yields
Nðx; tÞ ¼ � M 0

1þ e
tan hþ sec h m‘€uþ K‘uð Þ

� �




x¼‘
�
Z x

‘

kM 0 dz�
Z x

‘

b1 dz ð21Þ
Therefore, substituting (21) into (8) yields
M 00

1þ e
� e0

ð1þ eÞ2
M 0 þ k

M 0

1þ e
tan hþ sec h m‘€uþ K‘uð Þ

� �




x¼‘
þ k

Z x

‘

kM 0 dzþ k
Z x

‘

b1 dz� b2 ¼ 0 ð22Þ
To express the longitudinal motion in terms of the transverse motion only, we solve (2)1 with respect to
u 0, then expand the result, discard higher-order terms, and obtain
u0 ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ eÞ2 � v02

q
� � 1

2
v02 þ e � � 1

2
v02 þ N

EA
ð23Þ
where use of the constitutive law, e = N/(EA), has been made. Further, it is necessary to determine how the
axial load depends on the leading transverse motion. To this end, a second-order expansion of N is sought
so as to have terms of like order in Eq. (23). The inertial force contributing to N can be expressed as
b1I ¼ �qAð€uþ €vv0Þ þ � � � � �qA€vv0 where the assumption that j€uj ¼ oðj€vv0jÞ has been made based on the
fact that, in absence of resonant external axial loads, the longitudinal acceleration is indeed small. There-
fore, considering consistently the longitudinal boundary acceleration of higher order and substituting the
second-order expansion of N into (23) yields
u0 ¼ �1

2
v02 � 1

EA
ðEIv00Þ0v0 þ K‘u
� �





x¼‘
þ 1

EA

Z x

‘

qA€vv0 dz�
Z x

‘

v00ðEIv00Þ0 dz
� �

ð24Þ
whose integration, on account of u(0, t) = 0, gives the longitudinal motion. The boundary axial motion
u(l, t) can then be calculated as
uðl; tÞ ¼ � 1þ K‘

Z ‘

0

1

EA
dx

� ��1
1

2

Z ‘

0

v02 dxþ ½v0ðEIv00Þ0	
� 





x¼‘

Z ‘

0

1

EA
dx

�
Z ‘

0

1

EA

Z x

‘

qA€vv0 dz�
Z x

‘

v00ðEIv00Þ0 dz
� �

dx
�

ð25Þ
Accounting for the computed u 0 and u00, the third-order curvature can then be expressed as
k ¼ v00 þ 1

2
v02v00 � v0

EA

Z x

‘

qA€vv0 dz�
Z x

‘

v00ðEIv00Þ0 dz
� �� �0

þ v0

EA

� �0
v0ðEIv00Þ0 þ K‘u
� �



x¼‘ ð26Þ
where u(‘, t) is given by (25). Substituting (26) into the constitutive law (13), and the result into (22), yields
the governing equation of motion as
qA €v� 1

2
€vv02 � €uv0

� �
� v00

Z x

‘

qA €uþ €vv0ð Þdz� ðEIv00Þ0

EA

Z x

‘

qA€vv0 dz
� �0

� EI
v0

EA

Z x

‘

qA€vv0 dz
� �0� �00

þ v00m‘€u‘ þ ðEIv00Þ00 þ 1

2
EIv02v00
� �00 þ ðEIv00Þ0

EA

Z x

‘

ðEIv00Þ0v00 dz
� �0

� EI
v0

EA

Z x

‘

ðEIv00Þ0v00 dz
� �0� �00

þ v00
Z x

‘

ðEIv00Þ0v00 dzþ K‘uþ ðEIv00Þ0v0
� �



x¼‘ v00 þ EI
v0

EA

� �0� �00
þ ðEIv00Þ0

EA

� �0( )
¼ f2 ð27Þ
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where €uðx; tÞ and €u‘ðtÞ are obtained differentiating, twice with respect to time, the longitudinal motion
resulting from (24) and (25). The dissipative forces have not been included for conciseness.
3.1. Equation of motion according to Mettler

The case of immovable or nearly immovable boundaries could be obtained as the limit case of the elas-
tically constrained beam when the end spring stiffness becomes relatively high. In this limit process, it is
reasonable to consider inertia and curvature nonlinearities of higher order as a consequence of the longi-
tudinally constrained nature of the resulting motions. In fact, letting the spring constant approach infinity,
in agreement with Crespo da Silva (1988), the limit spring reaction force becomes
K‘uðl; tÞ ¼ �
EA
2‘

Z ‘

0

v02 dx ð28Þ
Therefore, assuming uniform cross-section properties and using (28), the governing equation of motion
leads to
q€vþ EIv0000 � EA
2‘

v00
Z ‘

0

v02 dx ¼ f2 ð29Þ
which is the equation first proposed by Mettler (1962).
4. A mechanical formulation for inextensible beams

When the beam is axially unrestrained or weakly restrained, it is reasonable and, computationally con-
venient, to enforce vanishing of the axis elongation, e = 0, which leads to
Kðu0; v0Þ :¼ ð1þ u0Þ2 þ ðv0Þ2 � 1 ¼ 0 ð30Þ
Solving (30) with respect to u 0 yields u 0 = �1 ± (1 � (v 0)2)(1/2). The expansion of u 0 in a Mac Laurin series
gives, to within second order, u 0 � �1/2(v 0)2 and, consequently, using the kinematic boundary condition
u(0, t) = 0 gives the longitudinal motion along with the associated velocity and acceleration. On account
of e = 0, the exact bending curvature, k(x) = h 0(x), and its third-order expansion become
k :¼ v00 þ u0v00 � u00v0 � v00 þ 1

2
ðv0Þ2v00 ð31Þ
Moreover, sinh = v 0 and cosh � 1 + u 0 � 1 � 1/2(v 0)2.
The balance equations are (7) and (8) with e = 0; further, the mechanical boundary condition in the axial

direction at x = ‘ is given by (12) with e = 0. Therefore, the axial force is given by Eq. (21) with e = 0. The
balance equation in the transverse direction becomes
M 00 þ k½M 0 tan hþ sec hðm‘€uþ K‘uÞ	jx¼‘ þ k
Z x

‘

kM 0 dzþ k
Z x

‘

b1 dz� b2 ¼ 0 ð32Þ
Incorporating the longitudinal motion into the inertial forces, substituting them into (32), expanding the
resulting equation and retaining terms up to third order yields the following equation of motion:
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qA €vþ v0
Z x

0

ð _v0Þ2 þ v0€v0
h i

dz� 1

2
€v v0ð Þ2

� �
þ v00

Z x

‘

qA �v0€vþ
Z x

0

ð _v02 þ v0€v0Þdz
� �

dx

� m‘v00
Z ‘

0

ð _v02 þ v0€v0Þdxþ v00 EIv00ð Þ0v0
� �



x¼‘ �
1

2
K‘

Z ‘

0

v0ð Þ2 dx
� �

þ EI v00 þ 1

2
v0ð Þ2v00

� �� �00

þ v00
Z x

‘

v00 EIv00ð Þ0 dz ¼ f2ðx; tÞ ð33Þ
The remaining mechanical boundary conditions (Fig. 1), to within third order, are
EI v00 þ 1

2
v0ð Þ2v00

� �
¼ 0; at x ¼ 0; ‘ ð34Þ
Also in this case, Hamilton�s extended principle can be effectively employed to obtain the equations of
motion. The inextensibility constraint is added to the Hamiltonian via a Lagrange multiplier; its minimiza-
tion leads to
dH� ¼
Z t2

t1

dðT � UÞ þ dW þ 1

2
d
Z ‘

0

cKðu0; v0Þdx
� �

dt ¼ 0 ð35Þ
where K indicates the inextensibility constraint (30) and c is the Lagrange multiplier. The kinetic and strain
energies are, respectively, given by (19) and
U ¼ 1

2

Z ‘

0

EI v002 þ 2u0v002 � 2v0v00u00
� �

dxþ 1

2
K‘uð‘; tÞ2 ð36Þ
Previously proposed models of inextensible beams (Crespo da Silva and Glynn, 1978; Luongo et al.,
1986) were based on the adoption of different truncated energies.
5. Asymptotic solutions

In this section, asymptotic expansions of the responses of both axially restrained and unrestrained uni-
form beams subject to primary-resonance excitations are sought employing the method of multiple scales
directly applied to the partial-differential equation of motion and boundary conditions (Lacarbonara,
1999). First, we discuss the general relaxed solution for axially restrained beams and, then, the axially unre-
strained case.

5.1. Extensible beams

A suitable non-dimensional form of (15) and (16) and of the boundary conditions can be obtained by
introducing the following nondimensional variables and parameters:
t� :¼ xct; x� :¼ x
‘
; v� :¼ v

l
; k2 :¼ EA

EI
‘2; l :¼ m‘

qA‘
; k‘ :¼ ‘

3K‘

EI
ð37Þ
where x2
c :¼ ðEIÞ=ðqA‘4Þ. The resulting nondimensional equations of motion, dropping the star for sake of

notational simplicity and neglecting the rotary inertia and rotary damping terms along with the distributed
couples, are
€uþ c1 _u� k2 u00 þ v0v00 � v02u00 � 2u0v0v00
	 


� v00v000 � v0v0000 þ 2u00v002 þ 4v0v00u000 þ 5v0u00v000 þ 3u0v00v000

þ v02u0000 þ 3u0v0v0000 ¼ p1ðx; tÞ ð38Þ



W. Lacarbonara, H. Yabuno / International Journal of Solids and Structures 43 (2006) 5066–5084 5075
€vþ c2 _vþ v0000 � k2 v0u00 þ u0v00 � 2u0v0u00 � u02v00 þ 3

2
v02v00

� �
� 3v00u000 � v0u0000 � 2u0v0000 � 4u00v000

þ 7v0u00u000 þ 8u002v00 � 2v003 þ 9u0v00u000 þ 12u0u00v000 � 8v0v00v000 þ 3u0v0u0000 þ 3u02 � 2v02
	 


v0000 ¼ p2ðx; tÞ

ð39Þ
where c1, c2 and p1, p2 are the nondimensional damping coefficients and external force components in the
axial and transverse directions, respectively.

We consider a harmonic uniform base acceleration near the primary resonance of the nth bending mode
away from internal resonances with any other mode. The associated distributed force is f2 :¼ �qA€y�b and its
nondimensional form is p2 :¼ abx*2 cosx*t where x* :¼ x/xc and ab :¼ Yb/‘ (x and Yb are the dimensional
circular frequency and amplitude of the prescribed base displacement). For the beam shown in Fig. 1, the
nondimensional mechanical boundary conditions are
v00 � ðu0v0Þ0 � v0ð Þ2v00 þ ðu02v0Þ0 ¼ 0; at x ¼ 0; 1 ð40Þ

l€uþ k‘uþ k2 u0 þ 1

2
v0ð Þ2 � u0 v0ð Þ2

� �
þ v000v0 � u0v0v000 � ðu0v0Þ0

� �0
v0 ¼ 0; at x ¼ 1 ð41Þ
Due to the axially constrained nature of the motions (when k‘ and/or l are large), the longitudinal mo-
tion is of higher order with respect to the transverse motion; then, uniform expansions of the solutions of
(38) and (39) are sought in the form
uðx; tÞ ¼ �2u2ðx; T 0; T 2Þ þ � � �
vðx; tÞ ¼ �v1ðx; T 0; T 2Þ þ �3v3ðx; T 0; T 2Þ þ � � �

ð42Þ
where � is a small nondimensional ordering parameter and Tj :¼ � jt, j = 0,2, are the governing unstretched
and stretched time scales, respectively. The time derivatives can then be expressed in terms of the indepen-
dent time scales as o/ot � D0 + �2D2 and o2=ot2 � D2

0 þ 2�2D0D2, with Dj :¼ o/oTj. Moreover, the excitation
and dissipative forces are demoted to third order where the internal and external resonant forces can bal-
ance each other.

Substituting (42) into the governing equations of motion (38) and (39) and equating like powers of � to
zero yields

Order �:
D2
0v1 þ v00001 ¼ 0 ð43Þ
Order �2:
D2
0u2 � k2u002 ¼ k2v01v001 þ v001v0001 þ v01v00001 ð44Þ
Order �3:
D2
0v3 þ v00003 ¼ �D2v1 � 2fD0v1 þ k2v01u002 þ

3

2
k2v01

2v001 þ 3v001u0002 þ v01u00002 þ 2u02v00001 þ 4u002v0001 þ 2v0031

þ 8v01v001v0001 þ 2v021 v00001 þ
1

2
abx

2eixT 0 þ cc

� �
ð45Þ
where f is the damping ratio in the transverse direction and cc indicates the complex conjugate of the pre-
ceding terms.
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Because x � xn, the nth bending mode is directly excited at resonance, and because there are no internal
resonances involving this mode with any other mode so that energy transfer between the modes cannot
occur, we assume the solution at order � as
v1 ¼ AnðT 2ÞeixnT 0/nðxÞ þ cc ð46Þ

where (xn,/n(x)) is the nth eigenpair (natural frequency, mode shape). Due to the self-adjointeness of the
linear unforced undamped problem, the eigenfunctions /m are mutually orthogonal and they are normal-
ized as follows

R 1

0
/m/n dx ¼ dmn with dmn denoting the Kronecker delta.

The second-order problem and its particular solution are, respectively, given by
D2
0u2 � k2u002 ¼ ðAnAn þ A2

ne2ixnT 0Þ k2/0n/
00
n þ /00n/

000
n þ /0n/

0000
n

� �
þ cc ð47Þ

u2 ¼ AnAnw1ðxÞ þ A2
ne2ixnT 0w2ðxÞ þ cc ð48Þ
where the overbar indicates the complex conjugate and the functions wj(x) are solutions of the following
boundary-value problems:
k2w001 ¼ �ðk
2/0n/

00
n þ /00n/

000
n þ /0n/

0000
n Þ ð49Þ

k2w002 þ 4x2
nw2 ¼ �ðk2/0n/

00
n þ /00n/

000
n þ /0n/

0000
n Þ ð50Þ
with the associated boundary conditions on wj.
Substituting v1 and u2 into the third-order problem and imposing thereafter its solvability yields
2ixnð _Aþ fAÞ ¼ CnA2
nAn þ

1

2
abeirt ð51Þ
where the resonance detuning condition, x = xn + �2r, r 2 R, has been used. Further solving for the fixed
points of the real-valued modulation equations resulting from (51), the following frequency–response equa-
tion is obtained:
x ¼ xn � Cna2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

2xna

� �2

� f2

s
ð52Þ
where a is the amplitude of the motion at leading order. The effective nonlinearity coefficient Cn in (52) can
be expressed as Cn ¼ CðuÞn þ CðvÞn with
CðuÞn ¼ k2 2

Z 1

0

w001/
0
n/n dxþ

Z 1

0

w002/
0
n/n dxþ 2

Z 1

0

w01/
00
n/n dxþ

Z 1

0

w02/
00
n/n dx

� �

þ 3 2

Z 1

0

w0001 /00n/n dxþ
Z 1

0

w0002 /00n/n dx
� �

þ 2

Z 1

0

w00001 /0n/n dxþ
Z 1

0

w00002 /0n/n dx

þ 2 2

Z 1

0

w01/
0000
n /n dxþ

Z 1

0

w02/
0000
n /n dx

� �
þ 4 2

Z 1

0

w001/
000
n /n dxþ

Z 1

0

w002/
000
n /n dx

� �
ð53Þ

CðvÞn ¼
9

2
k2

Z 1

0

/00nð/
0
nÞ

2/n dxþ 6

Z 1

0

ð/00nÞ
3/n dxþ 24

Z 1

0

/0n/
00
n/
000
n /n þ 6

Z 1

0

ð/0nÞ
2/0000n /n dx ð54Þ
The coefficient CðuÞn captures contributions from the longitudinal motion via the functions wj whereas CðvÞn

relates to effects of the transverse motion. For a hinged–hinged uniform beam, the eigenpair is xn = n2p2

and /n ¼
ffiffiffi
2
p

sin npx, n = 1,2, . . .. The functions wj(x), solutions of the boundary-value problems (49)
and (50) with boundary conditions wj(0) = wj(1) = 0 (hinged–hinged beam), can be expressed as



Table
Proper

Length
Width
Thickn
Densit
Young
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w1ðxÞ ¼ �
1

4
np 1� 2

n2p2

k2

� �
sin 2npx; w2ðxÞ ¼ �

npð2n2p2 � k2Þ
4ðn2p2 � k2Þ

sin 2npx ð55Þ
The computations leading to the effective nonlinearity coefficient resulted in
CðuÞn ¼
1

4
n4p4 ð2n2p2 � 3k2Þð2n2p2 � k2Þ2

k2ðn2p2 � k2Þ
; CðvÞn ¼

3

4
n4p4ð6n2p2 � 3k2Þ ð56Þ
On the other hand, using Mettler�s theory, Eq. (29), yields the effective nonlinearity coefficient
CM

n ¼ �3=2k2n4p4.
Next, we discuss the main analytical predictions with emphasis on comparing the results obtained with

the proposed theory with those obtained using Mettler�s theory. To this end, we observe that the frequency–
response curves, given by Eq. (52), exhibit a softening- or hardening-type behavior depending on whether
Cn is positive or negative. Beside regulating the qualitative character of the nonlinear frequency–response
functions, this coefficient also affects quantitatively the dependence of the mode nonlinear frequency cor-
rections on the oscillation amplitude. Therefore, we closely investigate this coefficient.

It is convenient to refer to the nondimensional properties of the test beam used in the experiments re-
ported in Table 1. In Fig. 2, we show a typical frequency–response curve when k = 1948, f = 0.06, and
ab = 1.2 · 10�5. The calculated effective nonlinearity coefficient is C1 = �5.548 · 108 and is the summation
of CðuÞ1 ¼ 2:77� 108 and CðvÞ1 ¼ �8:32� 108. The fact that CðuÞ1 > 0 entails that the contribution from the
longitudinal motion is of the softening type. However, because C1 < 0, the resulting frequency–response
curve is of the hardening type. Analyzing Eq. (56) allows to conclude that all modes are of the hardening
type for all physically admissible slendernesses (i.e., k P 30).

We note that the effective nonlinearity coefficient, for very slender beams (i.e., k2!1), converges to
that obtained with Mettler�s theory. Therefore, we can conclude that Mettler�s solution converges asymp-
totically to the actual solution, within the range of moderately large oscillation amplitudes, for rather slen-
der beams whose effective axial stiffness is much larger than the bending stiffness thus making the stretching
geometric nonlinearity the dominant nonlinearity. However, for non-slender beams, the discrepancies may
become significant as it is shown in Fig. 3 where variation of the percent difference in the effective nonlin-
earity coefficients obtained with the two models is shown when varying k. We further note that (i) the dif-
ference increases with the mode number and/or for small slenderness and (ii) the effective nonlinearity
coefficient obtained using Mettler�s theory may overestimate the actual coefficient by as much as 70%
for the fifth mode of non-slender beams or between 5% and 40% for lower modes. For completeness, men-
tion must be made of the fact that, for non-slender beams, the model should be further relaxed and allow
also shear deformations.

To look closely into the differences between the theories, we calculated the axial strains employing
Mettler�s theory and the proposed theory and obtained, respectively,
eðtÞ ¼ 1

2
a2ð1þ cos 2ðxt þ cnÞÞ

Z 1

0

ð/0nÞ
2 dx ð57Þ
1
ties of the test beam

(mm) 450
(mm) 10
ess (mm) 0.8
y (kg/m3) 8890
modulus (GPa) 116



Fig. 2. Frequency–response curve of the first mode of a hinged–hinged beam with k = 1948, f = 0.06, and ab = 1.2 · 10�5. The dashed
region indicates unstable solutions (saddles).

Fig. 3. Variation with the slenderness k of the percent relative difference of the effective nonlinearity coefficient obtained with Mettler�s
theory with respect to the relaxed theory for the lowest five modes of a hinged–hinged beam.
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eðx; tÞ ¼ 1

2
a2 ðw01 þ

1

2
/02n Þ þ ðw

0
2 þ

1

2
/02n Þ cos 2ðxt þ cnÞ

� �
ð58Þ
We note that the strain calculated via Mettler�s theory is uniform and turns out to be an average of the
actual strain (58) which, on the other hand, exhibits a variation along the beam span with a number of half
waves that is twice the number associated with the excited mode shape. This strain variation is governed by
the functions wj and the mode shape and induces a stretching effect that, overall, is smaller than that pre-
dicted by the more constrained Mettler�s theory.

5.2. Inextensible beams

The governing equation of motion for inextensible beams is given by (33). Asymptotic solutions are
obtained applying the method of multiple scales directly to (33). Using the general results reported in
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Lacarbonara and Camillacci (2004), the frequency–response equation is again given by Eq. (52) where the
effective nonlinearity coefficient is now expressed as Cn ¼ 3CG

n þ CI
n with
Fig. 4.
and ab
CG
n ¼ � /000n /0n




x¼1
� 1

2
k‘

Z 1

0

ð/0nÞ
2 dx

� � Z 1

0

/00n/n dx� 1

2

Z 1

0

/n ð/0nÞ
2/00n

h i00
dx

�
Z 1

0

/00n/n

Z x

1

/00n/
000
n dz

� �
dx ð59Þ

CI
n ¼x2

n l
Z 1

0

/00n/n dx
Z 1

0

ð/0nÞ
2 dx�

Z 1

0

/0n/n

Z x

0

ð/0nÞ
2 dz

� �
dx�

Z 1

0

/00n/n

Z x

1

Z z

0

ð/0nÞ
2 dy dz

� �
dx

� �

� 3x2
n l

Z 1

0

/00n/n dx
� � Z 1

0

ð/0nÞ
2 dx

� �
�
Z 1

0

/0n/n

Z x

0

ð/0nÞ
2 dz

� �
dxþ

Z 1

0

/00n/n

Z x

1

/0n/n dz
� �

dx
�

�
Z 1

0

/00n/n

Z x

1

Z z

0

ð/0nÞ
2 dy dz

� �
dx
�

ð60Þ
Here, CG
n relates to the contribution from the geometric and curvature nonlinearities whereas CI

n is the con-
tribution arising from the nonlinear inertia forces. The result of the calculations for the simply-supported
beam shown in Fig. 1 is
CG
n ¼ �

3

2
n4p4ðk‘ þ 3n2p2Þ; CI

n ¼ n6p6 19

8
þ 1

3
n2p2ð1þ 6lÞ

� �
ð61Þ
Calculating the effective nonlinearity coefficient for the same test beam (k = 1948 and l = 8.1) yields
C1 = 1.55 · 105 with CG

1 ¼ �4326 and CI
1 ¼ 1:59� 105. The frequency–response curve corresponding to

f = 0.06 and ab = 1.1 · 10�3 is shown in Fig. 4. As expected, due to the dominating inertia nonlinearity,
the curve is of the softening type. On the other hand, using the approximate theory described in Luongo
et al. (1986), the effective nonlinearity coefficient becomes
Cn ¼
n6p6

12
ð8n2p2 � 45Þ � 3

2
k‘n4p4 þ 2n8p8l ð62Þ
Frequency–response curve of the first mode of a simply supported (axially unrestrained) beam with k = 1948, f = 0.06, l = 8.1,
= 1.1 · 10�3. The dashed region indicates unstable solutions (saddles).



Fig. 5. Variation with the mass ratio l of the percent relative difference of the effective nonlinearity coefficient obtained with the
existing theory, Eq. (62), with respect to the proposed model for the lowest three modes of a simply supported beam.
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It is interesting to calculate the percent relative difference in the effective nonlinearity coefficient obtained
with the proposed theory, Eq. (61), and with the existing theory, Eq. (62). As shown in Fig. 5, it is clear that
(i) Eq. (62) overestimates the effective nonlinearity coefficient with an increasing rate for smaller mass ratios
and can be as much as 50% and (ii) except for rather small mass ratios, the difference increases for higher
modes.
6. Experimental results and comparison with the theory

The experimental setup, shown in Fig. 6, consists of the test specimen and the base whose sinusoidal dis-
placement is controlled by an electromagnetic shaker (EMIC: 371-A, maximum excitation force of 98 N).
The test specimen is a uniform beam with rectangular cross-section made of phosphore bronze
(450 · 10 · 0.8 mm3), which is supported by hinges made of radial bearings (JIS 6200). One of the hinges
is rigidly clamped onto the base. The other hinge is mounted on top of a sliding linear bearing (IKO Ball
Slide Unit, Model BSU 44-50 A) to realize the axially movable end. When the sliding linear bearing is
mechanically locked, the beam ends are both hinged and immovable. Two laser sensors were used to mea-
sure the displacements of the beam and the base excitation, respectively: a KEYENCE LB-01 (resolution of
40 lm and sampling time of 20 ms) and a KEYENCE LC-2430 (resolution of 0.02 lm and a sampling time
of 20 ms). Also, a strain gauge was attached to the midspan of the beam to measure the strains in the simply
supported (axially movable) configuration.

To generate frequency–response curves, we monitored the time traces and frequency contents of the dis-
placements and strains of the beam by using a portable signal analyzer (ONO SOKKI: DS2100).

We preliminarily measured the first natural frequency (6.47 Hz) and the logarithmic decrement for esti-
mating the damping ratio from the time history of the free response of the mid-span section in Fig. 7. We
found d = 0.3659 and f = 0.06, respectively. Then, considering the same excitation amplitude as that in
Fig. 3 (Yb = 0.017 mm), we performed forward and backward frequency sweeps around the first natural
frequency to construct the frequency–response curves. The experimentally obtained frequency–response
curve is superimposed on the theoretically obtained curve in Fig. 8. The filled (unfilled) circles indicate
the forward (backward) sweeps. The arrows indicate the jumps. As expected, the first mode is of the hard-
ening type. The fact that the downward jump occurs at a lower amplitude than that theoretically predicated



Fig. 6. A schematic view of the experimental setup.

Fig. 7. Free decay of the first-mode response at the mid-span section toward the experimental estimation of the damping ratio.
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indicates a possible premature jump due to the fact that, at high oscillation amplitudes on the upper res-
onant branch, the stable and unstable motions are very close and, hence, small perturbations, mostly
caused by the excitation frequency step increments, are responsible for jumps onto the low-amplitude
non-resonant motion whose basin of attraction is much larger than that of the large-amplitude attractor.
These premature jumps cannot be easily avoided in spite of the great care exercised in performing the exper-
iments. Each complete frequency sweep took on the average about ten hours. The overall shown agreement
clearly denotes the high fidelity of the proposed theory.

Subsequently, we interrogated the simply supported (axially unrestrained) beam with the same excitation
conditions as those in Fig. 4 (Yb = 0.5 mm). The boundary mass of the sliding bearing is m‘ = 0.250 kg
(l = 8.1). The experimentally obtained frequency–response is shown superimposed on that theoretically



Fig. 8. Experimentally (circles) and theoretically (solid lines) obtained frequency–response curves of the first mode of the hinged–
hinged test beam when Yb = 0.017 mm. Filled (unfilled) circles indicate forward (backward) sweeps. The dashed-dotted line indicates
the theoretical backbone.
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predicated in Fig. 9. The agreement between the theoretical predictions and the experimental results is
good. To further corroborate the findings and the repeatability of the experiments, using a different setup,
three frequency–response curves were measured for three increasingly higher excitation amplitudes as
shown in Fig. 10. In this case, the high-resolution sensor was used to measure the transverse displacement
of the beam at its quarter-span section from left. The results indicate that, as expected, the frequency–re-
sponse curves are of the softening type regardless of the excitation amplitude; further, the width of the mul-
ti-valued frequency range increases with the excitation amplitude as theoretically predicted in Fig. 4.
Fig. 9. Experimentally (circles) and theoretically (solid lines) obtained frequency–response curves of the first mode of the simply
supported test beam when ab = 0.5 mm. Filled (unfilled) circles indicate backward (forward) sweeps. The dashed-dotted line indicates
the theoretical backbone.



Fig. 10. Experimentally obtained (circles) frequency–response curves of the first mode of the simply supported test beam when
ab = 0.2 mm (crosses), ab = 0.5 mm (diamonds), and ab = 0.85 mm (circles). Filled (unfilled) symbols indicate backward (forward)
sweeps and aj1/4 indicates the displacement amplitude of the quarter-span beam section.
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7. Conclusions

Three models of straight non-uniform beams undergoing large in-plane motions have been proposed, all
derived from the geometrically exact theory of rods. The most general and relaxed model describes exten-
sional and bending motions and neglects shear deformations; hence, it is suitable to predict nonlinear mo-
tions of slender beams with general boundary conditions. The second model is a constrained version of the
previous one whereby, using asymptotic arguments, the longitudinal motion is expressed in terms of the
leading transverse motion. The third model, incorporating the inextensibility and unshearability con-
straints, describes bending motions only; hence, it is suitable for beams that are either axially unrestrained
or weakly restrained.

For all beam models, the order-three expanded equations of motion have been determined in a form
amenable to a perturbation treatment. These equations have also been obtained using Hamilton�s extended
principle based on a rigorously truncated kinematic model. Closed-form solutions of the responses to pri-
mary resonances of the bending modes have been determined employing the method of multiple scales di-
rectly applied to the governing equations of motion. The solutions have been compared with the predictions
of literature models in nonlinear beam theory. It has been ascertained that, for axially restrained beams, the
model due to Mettler is an asymptotic expansion of the richer and more relaxed models here presented that
allow to capture more accurately the strain field, hence the stretching effect, as well as contributions from
the longitudinal motion. Moreover, for axially unrestrained beams (here, simply supported beams), it is
confirmed, as pointed out by previous studies, that the inertia nonlinearity dictates the softening signature
of the first-mode vibrations. However, comparisons with the predictions of an existing approximate theory
show that the latter overestimates the effective nonlinearity coefficient of the mode, hence the nonlinear
strength of the first-mode motions.

The fidelity of the proposed models has been assessed comparing the theoretically obtained frequency–
response curves of the first mode of two test beams with those experimentally obtained. The proposed
refined models may also be suitable to describe general classes of in-plane motions of non-uniform
micro-beams subject to different loading and boundary conditions.
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